Biodegradation of 2,4-Dichlorophenol through a Distal meta-Fission Pathway.
نویسندگان
چکیده
Alcaligenes eutrophus JMP222, a derivative of A. eutrophus JMP134 which has lost plasmid pJP4 (encoding the tfd genes for the ortho fission pathway), was induced for the meta fission pathway when grown on o-cresol. Resting cell suspensions, grown on o-cresol, oxidized 2,4-dichlorophenol (2,4-DCP), a degradation product of 2,4-dichlorophenoxyacetic acid, to 3,5-dichlorocatechol. Further degradation of 3,5-dichlorocatechol was observed by the production of a yellow ring fission product with liberation of chloride. Oxidation of 2,4-DCP (305 (mu)M) in 47 hs resulted in 69% dehalogenation through this pathway. The ring fission product was characterized as 2-hydroxy-3,5-dichloro-6-oxo-hexa-2,4-dienoic acid by gas chromatography-mass spectrometry and gas chromatography-Fourier transform infrared spectroscopy. These data indicate that 2,4-DCP is degraded through a distal meta ring fission pathway, in contrast to either a suicidal proximal fission or the standard ortho fission pathway.
منابع مشابه
Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells
The mycelium (or conidia) of Aspergillus awamori NRRL 3112 was investigated for its ability to degrade phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol in high concentrations. The biodegradation studies were performed in a liquid medium with the phenolic compounds a A b o c k ©
متن کاملBiodegradationof2,4-dichlorophenol in thepresenceof volatile organic compounds in soils underdi¡erent vegetation types
It has been suggested that monoterpenes emitted within the soil profile, either by roots or by decaying biomass, may enhance the biodegradation of organic pollutants. The aim of this study was to evaluate the effect of biogenic volatile organic compounds (VOCs) on the catabolism of 2,4-dichlorophenol in soils. Soils were collected from areas surrounding monoterpene (woodland) and nonmonoterpene...
متن کاملBiodegradation of 2,4-dichlorophenol and phenol in an airlift inner-loop bioreactor immobilized with Achromobacter sp
An airlift inner-loop bioreactor packed with honeycomb-like ceramic as the carrier was developed and its capacity to immobilize microorganism was studied through adding bacteria, Achromobacter sp., capable of degrading 2,4-dichlorophenol (2,4-DCP), directly to the reactor under continuous operation. Effects of phenol in the feed with 2,4-DCP on 2,4-DCP removal were investigated under fed-batch ...
متن کاملEffects of growth substrate on triclosan biodegradation potential of oxygenase-expressing bacteria.
Triclosan is an antimicrobial agent, an endocrine disrupting compound, and an emerging contaminant in the environment. This is the first study investigating triclosan biodegradation potential of four oxygenase-expressing bacteria: Rhodococcus jostii RHA1, Mycobacterium vaccae JOB5, Rhodococcus ruber ENV425, and Burkholderia xenovorans LB400. B. xenovorans LB400 and R. ruber ENV425 were unable t...
متن کاملPhotochemical Degradation of 2,4-dichlorophenol in Aqueous Solutions by Fe2+/ Peroxydisulfate/ UV Process
Phenol and its derivatives are one of the most common contaminants in the aquatic ecosystem. Because of high toxicity of 2,4-DCP for aquatic life, resistance to biodegradation and potential for biological accumulation it is known as a priority contaminant in the aquatic environment. Advanced Oxidation Processes were successfully used for degradation of non-biodegradable contaminants that are re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 63 5 شماره
صفحات -
تاریخ انتشار 1997